When Raw Data Prevails: Are Large Language Model Embeddings Effective in Numerical Data Representation for Medical Machine Learning Applications?

Yanjun Gao, Skatje Myers, Shan Chen, Dmitriy Dligach, Timothy A. Miller, Danielle Bitterman, Matthew Churpek, Majid Afshar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Original languageEnglish
Title of host publicationEMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Findings of EMNLP 2024
EditorsYaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen
PublisherAssociation for Computational Linguistics (ACL)
Pages5414-5428
Number of pages15
ISBN (Electronic)9798891761681
DOIs
StatePublished - 2024
Event2024 Findings of the Association for Computational Linguistics, EMNLP 2024 - Hybrid, Miami, United States
Duration: Nov 12 2024Nov 16 2024

Publication series

NameEMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Findings of EMNLP 2024

Conference

Conference2024 Findings of the Association for Computational Linguistics, EMNLP 2024
Country/TerritoryUnited States
CityHybrid, Miami
Period11/12/2411/16/24

ASJC Scopus Subject Areas

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems
  • Linguistics and Language

Cite this