TY - JOUR
T1 - Translational Shape Invariance and the Inherent Potential Algebra
AU - Gangopadhyaya, Asim
AU - Mallow, Jeffrey
AU - Sukhatne, Uday P.
N1 - Gangopadhyaya, Asim, Jeffry V. Mallow, and Uday P. Sukhatme. “Translational Shape Invariance and the Inherent Potential Algebra.” Physical Review A 58, no. 6 (December 1, 1998): 4287–92. doi:10.1103/PhysRevA.58.4287.
PY - 1998/12/1
Y1 - 1998/12/1
N2 - For all quantum-mechanical potentials that are known to be exactly solvable, there are two different, and seemingly independent methods of solution. The first approach is the potential algebra of symmetry groups; the second is supersymmetric quantum mechanics, applied to shape-invariant potentials, which comprise the set of known exactly solvable potentials. Using the underlying algebraic structures of Natanzon potentials, of which the translational shape-invariant potentials are a special subset, we demonstrate the equivalence of the two methods of solution. In addition, we show that, while the algebra for the general Natanzon potential is so(2,2), the subgroup so(2,1) suffices for the shape invariant subset. Finally, we show that the known set of exactly solvable potentials in fact constitutes the full set of such potentials.
AB - For all quantum-mechanical potentials that are known to be exactly solvable, there are two different, and seemingly independent methods of solution. The first approach is the potential algebra of symmetry groups; the second is supersymmetric quantum mechanics, applied to shape-invariant potentials, which comprise the set of known exactly solvable potentials. Using the underlying algebraic structures of Natanzon potentials, of which the translational shape-invariant potentials are a special subset, we demonstrate the equivalence of the two methods of solution. In addition, we show that, while the algebra for the general Natanzon potential is so(2,2), the subgroup so(2,1) suffices for the shape invariant subset. Finally, we show that the known set of exactly solvable potentials in fact constitutes the full set of such potentials.
KW - potential algebras
UR - https://ecommons.luc.edu/physics_facpubs/14
U2 - 10.1103/PhysRevA.58.4287
DO - 10.1103/PhysRevA.58.4287
M3 - Article
VL - 58
JO - Physics: Faculty Publications and Other Works
JF - Physics: Faculty Publications and Other Works
IS - 4287
ER -