The Herpesvirus Protease: Mechanistic Studies and Discovery of Inhibitors of the Human Cytomegalovirus Protease

Daniel L. Flynn, Daniel P. Becker, Vickie Dilworth, Maureen Highkin

Research output: Contribution to journalArticlepeer-review

Abstract

The herpesvirus protease is a recently identified enzyme which is essential for viral replication. It is found in all herpesviruses and offers a new molecular target for therapeutic intervention. Its genomic structure has recently been described and consists of a large open reading frame which encodes a fusion protein containing an amino-terminal protease domain in-frame with a carboxyl-terminal "assembly protein-like" domain. Auto-processing releases the amino-terminal protease as a maturational enzyme. The herpesvirus protease has been characterized as a novel serine protease. Four surface accessible sulfhydryl groups have been identified in the human cytomegalovirus (HCMV) protease. Utilizing a fluorogenic DABCYL-EDANS substrate assay, directed screening has identified a class of sulfhydryl-modifying benzimidazolylmethyl sulfoxides which inhibits recombinant HCMV protease. Site-directed mutagenesis studies suggest oxidative modification of surface-accessible HCMV protease Cys138 (and possibly Cys161) by this class of inhibitors. The benzimidazolylmethyl sulfoxide 1 inhibits HCMV protease (IC50 = 1.9 microM), exhibits selectivity vs. mammalian serine proteases, and exhibits antiviral activity in an HCMV infected cell culture assay.

Original languageAmerican English
JournalChemistry: Faculty Publications and Other Works
Volume15
Issue number1
StatePublished - May 1 1997

Keywords

  • herpesvirus protease

Disciplines

  • Chemistry

Cite this