TY - JOUR
T1 - The effects of stimulus symmetry on hierarchical processing in infancy
AU - Guy, Margaret W
AU - Reynolds, Greg D.
AU - Mosteller, Sara M.
AU - Dixon, Kate C.
N1 - RESEARCH ARTICLE Corresponding author Department of Psychology, University of South Carolina, Columbia, South Carolina Correspondence Maggie W. Guy, Department of Psychology, University of South Carolina, Institute for Mind and Brain, 1800 Gervais St, Columbia 29201, South Carolina.
PY - 2017/4
Y1 - 2017/4
N2 - The current study investigated the effects of stimulus symmetry on the processing of global and local stimulus properties by 6-month-old short- and long-looking infants through the use of event-related potentials (ERPs). Previous research has shown that individual differences in infant visual attention are related to hierarchical stimulus processing, such that short lookers show a global processing bias, while long lookers demonstrate a local processing bias (Guy, Reynolds, & Zhang, 2013). Additional research has shown that in comparison with asymmetry, symmetry is associated with more efficient stimulus processing and more accurate memory for stimulus configuration (Attneave, 1955; Perkins, 1932). In the current study, we utilized symmetric and asymmetric hierarchical stimuli and predicted that the presence of asymmetry would direct infant attention to the local features of stimuli, leading short lookers to regress to a local processing strategy. Results of the ERP analysis showed that infants familiarized with a symmetric stimulus showed evidence of global processing, while infants familiarized with an asymmetric stimulus did not demonstrate evidence of processing at the global or local level. These findings indicate that short- and long-looking infants, who might otherwise fail to process global stimulus properties due to limited visual scanning, may succeed at global processing when exposed to symmetric stimuli. Furthermore, stimulus symmetry may recruit selective attention toward global properties of visual stimuli, facilitating higher-level cognitive processing in infancy.
AB - The current study investigated the effects of stimulus symmetry on the processing of global and local stimulus properties by 6-month-old short- and long-looking infants through the use of event-related potentials (ERPs). Previous research has shown that individual differences in infant visual attention are related to hierarchical stimulus processing, such that short lookers show a global processing bias, while long lookers demonstrate a local processing bias (Guy, Reynolds, & Zhang, 2013). Additional research has shown that in comparison with asymmetry, symmetry is associated with more efficient stimulus processing and more accurate memory for stimulus configuration (Attneave, 1955; Perkins, 1932). In the current study, we utilized symmetric and asymmetric hierarchical stimuli and predicted that the presence of asymmetry would direct infant attention to the local features of stimuli, leading short lookers to regress to a local processing strategy. Results of the ERP analysis showed that infants familiarized with a symmetric stimulus showed evidence of global processing, while infants familiarized with an asymmetric stimulus did not demonstrate evidence of processing at the global or local level. These findings indicate that short- and long-looking infants, who might otherwise fail to process global stimulus properties due to limited visual scanning, may succeed at global processing when exposed to symmetric stimuli. Furthermore, stimulus symmetry may recruit selective attention toward global properties of visual stimuli, facilitating higher-level cognitive processing in infancy.
UR - https://doi.org/10.1002/dev.21486
U2 - 10.1002/dev.21486
DO - 10.1002/dev.21486
M3 - Article
SN - 1098-2302
VL - 59
JO - Developmental Psychobiology
JF - Developmental Psychobiology
IS - 3
ER -